
Tetrahedron Letters 50 (2009) 4773–4776
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Microwave-assisted InCl3-catalyzed Meyer–Schuster rearrangement
of propargylic aryl carbinols in aqueous media: a green approach
to a,b-unsaturated carbonyl compounds

Victorio Cadierno *, Javier Francos, José Gimeno
Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica ‘Enrique Moles’ (Unidad Asociada al C.S.I.C.),
Universidad de Oviedo, 33071, Oviedo, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 May 2009
Revised 3 June 2009
Accepted 8 June 2009
Available online 12 June 2009

Keywords:
The Meyer–Schuster rearrangement
Propargylic aryl carbinols
a,b-Unsaturated carbonyl compounds
Indium(III) chloride
MW-assisted synthesis
Water as solvent
Isomerization reactions
0040-4039/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.tetlet.2009.06.040

* Corresponding author. Tel.: +34 985102985; fax:
E-mail address: vcm@uniovi.es (V. Cadierno).
A novel, efficient, simple and environmentally benign protocol for the Meyer–Schuster isomerization of
propargylic aryl carbinols into a,b-unsaturated carbonyl compounds has been developed using catalytic
amounts of InCl3, pure water as the solvent, and microwave irradiation as the heating source.
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The use of water as an eco-friendly reaction medium in con-
junction with microwave (MW) irradiation is gaining widespread
acceptance, not only because particular or unexpected reactivities
can be in some cases observed, but also because its significant use-
fulness for Green Chemistry.1 Similarly, the search of organic reac-
tions proceeding with atom-economy (all atoms of reactants end
up in the final products) has also emerged as a major objective
for synthetic chemists.2 In this context, the broad utility of a,b-
unsaturated carbonyl compounds and the easy preparation of
propargylic alcohols make the isomerization of the latter into the
former a useful transformation.3 To achieve this goal, the well-
known Meyer–Schuster rearrangement represents the simplest
and most widely used approach (Scheme 1).4,5

Successful application of this Brønsted acid-catalyzed isomeri-
zation reaction in the design of novel histamine H3-receptor antag-
onists,6 antifungal mold metabolites7 and aza-analogues of the
biological active Senkyunolide-E,8 as well as in the construction
of the Taxol AB-system,9 has been described confirming its syn-
thetic utility. However, harsh conditions and strong acidic media
are usually required, which often give rise to non-regioselective
transformations due to competitive Rupe-type processes (Scheme
1),5 limiting seriously the applicability of this textbook reaction.
ll rights reserved.
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In recent years, it has been described that regioselective Meyer–
Schuster reactions can be efficiently achieved under milder condi-
tions by the aid of transition metals, the reported examples includ-
ing several oxo-complexes10 as well as Ru-,11 Au-12 and Ag-based13

systems. In addition, taking advantage of the affinity shown by
‘soft’ Lewis-acids for p-bonds over non-bonded electron pairs,14

Dudley and co-workers have also demonstrated the utility of such
reagents (i.e., InCl3, Sc(OTf)3 and Cu(OTf)2) as catalysts for the
Meyer–Schuster isomerization of ethoxyalkynyl carbinols into
a,b-unsaturated esters.15

In all the above-mentioned examples the reactions were per-
formed in organic media, the search for alternative catalytic meth-
ods operating in water being highly desirable.16 In this sense, we
report herein an efficient, general and environmentally benign
aqueous protocol for the Meyer–Schuster isomerization of propar-
gylic aryl carbinols into a,b-unsaturated carbonyl compounds
Meyer-Schuster Rupe
(only if R3 = CHR4R5)

Scheme 1. The Meyer–Schuster and Rupe rearrangements.



Table 1
MW-assisted InCl3-catalyzed Meyer–Schuster rearrangement of terminal propargylic aryl carbinolsa

Entry Propargylic alcohol % InCl3 (mol %) Time (min) Product GC yield (%) Isolated yield (%)

1

HO

1 5 H

OH

>99 91

2

HO

1 5 H

OH

>99 87

3

HO

OMe

MeO
1 5

H

OH

MeO

OMe

>99 93

4

HO

Me

Me
1 15

H

OH

Me

Me

>99 89

5

HO

F

F
1 30

H

OH

F

F

>99 90

6

HO

Cl

Cl
1 150

H

OH

Cl

Cl

>99 93

7

HO

1 5
H

OH

>99 90b

8

HO

5 300 H

OH

96 85

9

OH

MeO

1 10
H

OH

MeO
H

>99 92

10

HO
MeO 2 180

H

OH

H

MeO

97 86

11

OH

OMe

1 10 H

OH

H
OMe

98 88

12

OH

MeS

1 10
H

OH

H
MeS

97 91

13

OH

1 120
H

OH

H

97 84
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Table 1 (continued)

Entry Propargylic alcohol % InCl3 (mol %) Time (min) Product GC yield (%) Isolated yield (%)

14

OH

2 120 H

OH

H

99 90

15

OH

Cl

2 360
H

OH

H
Cl

94 81

16
OH

S 1 10
H

OH

H

S >99 95

a Reactions were performed under air atmosphere in a CEM Discover� S-Class microwave synthesizer at 160 �C through moderation of the initial microwave power
(300 W); 1 mmol of the corresponding propargylic aryl carbinol (1 M in water) was used.

b Isolated as a mixture of stereoisomers (E/Z ratio = 61:39).
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using catalytic amounts of the water-compatible and inexpensive
Lewis-acid InCl3. Microwave irradiation is used as the heating
source resulting in short reaction times, almost quantitative yields
and complete E-stereoselectivity. Results obtained in the isomeri-
zation of a variety of terminal propargylic aryl carbinols are sum-
marized in Table 1.

At the beginning, the isomerization of commercially available
1,1-diphenyl-2-propyn-1-ol into 3,3-diphenylpropenal was used
as a model reaction. Thus, we found that, under optimized condi-
tions (1 mol % InCl3; 1 M solution of the substrate in water,
160 �C), complete and selective conversion of the alkynol into the
enal takes place after only 5 min of MW-irradiation (entry 1), the
use of lower temperatures and/or catalyst loadings slowing down
the reaction considerably.17 Remarkably, neither an inert atmo-
sphere nor an organic co-solvent was required. Under these opti-
mal reaction conditions,18 other tertiary propargylic aryl
carbinols were efficiently transformed into the corresponding en-
als (P87% isolated yields; quantitative yields were in all cases ob-
served by GC) within 5–150 min (entries 1–7). Influence of the
electronic properties of the aryl rings on the reaction rates was ob-
served. Thus, alkynols with electron-withdrawing groups showed
less reactivity (entries 5–6) as compared to the substrates with
electron-donating functionalities (entries 3–4). Interestingly, no
competitive Rupe-type rearrangement of 2-phenyl-3-butyn-2-ol
was observed under these conditions, a mixture of the E and Z ster-
eoisomers of 3-phenyl-2-butenal being exclusively formed (entry
7).19 As shown in entry 8, InCl3 is also able to catalyze the isomer-
ization of the dialkyl-substituted alkynol 2-ethynyl-adamantan-2-
ol in water. However, a higher catalyst loading (5 mol %) and a
longer reaction time (5 h) were in this case required.

Probably, the most significant results of this study were ob-
tained in the isomerization of secondary terminal alkynols (entries
9–16), since the resulting enals were generated in all cases as the
HO

R R
H

Me

O

H
InCl3 (1 mol%)

MW / H2O / 160 ºC / 10 min
Me

R = Ph (89%), 4-C6H4OMe (91%), 4-C6H4SMe (88%)

HO

Ph
Ph

Ph

Ph

O

H
InCl3 (1 mol%)

MW / H2O / 160 ºC / 20 min
PhPh

(87%)

Scheme 2. Meyer–Schuster isomerization of internal alkynols.
thermodynamically more stable E isomer, regardless of the elec-
tronic properties of the aromatic or heteroaromatic substituent
present in the molecule. Such a remarkable stereoselectivity has
been rarely observed.10b,12d,19

Finally, it is also worth to note that the scope of this aqueous
isomerization process is not restricted to propargylic aryl carbinols
bearing a terminal C„C bond, the internal ones being also effi-
ciently transformed into the corresponding enones. Moreover, as
exemplified in Scheme 2, complete E-stereoselectivity was once
again reached starting from secondary alcohols.

In summary, a simple, general,20 selective and efficient protocol
for the the Meyer–Schuster isomerization of propargylic aryl carbi-
nols into a,b-unsaturated carbonyl compounds, very valuable raw
materials in organic synthesis, has been developed using inexpen-
sive InCl3.21 Moreover, the process is truly sustainable since, in
addition to its atom-economy, it proceeds in a pure aqueous med-
ium, employs MW-irradiation as the heating source, and the cata-
lyst can be recycled.22 Further investigations into the application of
this methodology to more challenging substrates, as well as in the
development of sequential C–C coupling processes,23 are now in
progress in our laboratories.
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